
Heritage Provider Network Health Prize Round 3 Milestone:
Team crescendo’s Solution

Rie Johnson Tong Zhang

1 Introduction
This document describes our entry nominated for the second prize of the Heritage Network Provider Health Prize
Round 3 Milestone as required by the rules. The entry is a weighted sum (called ‘blend’ in this document) of multiple
runs, each of which was generated by one of the following methods:

• Regularized greedy forest (RGF) [6].

• Gradient boosting decision tree (GBDT) [5].

• Linear models with L2 regularization, trained for the residual of either RGF or GBDT predictions. Some linear
model runs used features generated by Alternating structure optimization (ASO) [1].

• Random forests [3] trained for the residual of either RGF or GBDT predictions.

The difference among the runs produced by the same algorithm is the features. Among these, RGF is a method to
learn tree ensembles, like GBDT. Our original motivation to enter the competition was to test RGF in a competitive
setting. In our experiments, RGF consistently produced more accurate models than GBDT, but blending RGF and
GBDT runs produced even more accurate models.

2 Algorithms
All the models were trained for minimizing square error with the log-scale target (log(x + 1)). Corresponding refer-
ences should be consulted for the content of the algorithms. This section describes how we used the algorithms. More
detailed information required for replicating the results will be given in the Appendix.

2.1 Regularized greedy forest (RGF)
Implementation of RGF is available at http://riejohnson.com/rgf_download.html, which is open soft-
ware issued under GNU Public License V3. As we performed regularization on leaf-only models with the extension
(described in [6]), there were two L2 regularization parameters to be set: one for weight optimization and the other
for tree learning. All the RGF runs set these parameters to 0.5 and 0.005, respectively. The model size in terms of the
number of leaf nodes in the forest (tree ensemble) was set to 20000 unless otherwise specified. The other parameters
were set to the default of the system.

2.2 Gradient boosting decision tree (GBDT)
A well-known implementation of GBDT is the R package gbm [7] though we used our own implementation for
convenience.

The shrinkage parameter, tree size (in terms of the number of leaf nodes), and the minimum training data points
per node were set to 0.01, 20, and 100, respectively. We did not perform data sampling. The model size in terms of
the number of leaf nodes in the forest was set to 20000 unless otherwise specified.

1

http://riejohnson.com/rgf_download.html

2.3 Random forests combined with RGF/GBDT
We trained random forests for the residual of either an RGF run or a GBDT run. That is, the training target for the
i-th data point was set to yi − f(xi) where yi is the original target (DaysInHospital in the log-scale) and f(xi) is the
prediction made by an RGF (or GBDT) model, which serves as base prediction. The prediction on test data was done
by adding to the base prediction the residual prediction made by a random forest model. Parameters used for random
forest training are described in the Table 8 in the Appendix.

2.4 Linear models combined with RGF/GBDT and ASO
The linear models were trained for the residual of either an RGF run or a GBDT run. More precisely, for the i-th data
point, let xi be the feature vector and let ỹi be the residual of the base prediction (i.e., ỹi = yi−f(xi)). Then the train-
ing objective of the linear models was to obtain weight vector ŵ = arg minw

[
1
n

∑n
i=1(w>xi − ỹi)2 + λw>w

]
.

The L2 regularization parameter λ was set to 0.01.
In some runs, we used Alternating structure optimization (ASO) [1] to generate additional features. Essentially,

ASO learns new features through dimensionality reduction of predictors that are trained for auxiliary tasks. At a
high level, the idea underlying ASO is multi-view learning as analyzed in [2]. The auxiliary tasks are in the form of
predicting one view of the features (target view) based on another view (feature view); for example, to predict how
many claims with PlaceSvc=Ambulance the member has, using the Vendor information as only input (i.e., zeroing out
other features). The ASO procedure we performed was as follows.

1. Define m auxiliary tasks.

2. Train linear predictors for the auxiliary tasks, which results in m weight vectors, and let W be a matrix whose
columns are the m weight vectors.

3. Compute W’s singular value decomposition, and let Uk be a matrix whose columns are the left singular vectors
of W corresponding to the k largest singular values.

4. Compute Z = U>k X where X is the original feature matrix whose columns are feature vectors. Then the
columns of Z are the new additional feature vectors of k dimensions.

The auxiliary tasks we defined will be given in Appendix A.3.

3 Features
Generation of individual features mostly follows or extends [4]. However, notable differences are that we did not do
any elaborate feature selection, and that we combined the extracted features quite differently – most of our runs used
the features generated by aggregating claims in a one-year period and a two-year period simultaneously. Details will
be given in Appendix A.

4 Blending and post processing

4.1 Blending to produce the winning submission
The nominated entry was a blend of five runs, and their public Leaderboard scores and blend weights are shown below.

name public score weight
run#1 0.457284 0.707974
run#2 0.458169 0.381684
run#3 0.458471 0.215296
run#4 0.458643 0.269279
run#5 0.459501 −0.574206

2

The blend weights were determined by a slight variation (described later) of Section 7.1 of [8], which approximately
solves ridge regression on the test data using the Leaderboard scores. As we understand it, this blending method was
also used by the previous milestone winners. Although [8] should be consulted for details, it is worth mentioning that
the center piece of this approximation is the fact that in the solution to ridge regression (X>X + nλI)−1X>y on the
n test data points, the only unknown term X>y (because the target y is unknown) can be closely approximated using
the Leaderboard scores. That is, if we let p(j) be the j-th run (predictions), then the j-th component of vector X>y is
p(j) · y, and we have:

p(j) · y = −1

2

(
‖p(j) − y‖2 − ‖p(j)‖2 − ‖y‖2

)
.

‖p(j) − y‖2 can be approximated by n · sj where sj is the Leaderboard score of the j-th run p(j), and ‖y‖2 can be
approximated using the all-zero benchmark provided by the organizer.

Our “slight variation” was to train for the residual, using the average of the five runs b = 1
5

∑5
j=1 p

(j) as base
prediction (introduced in Section 2.3), and to use p(j) −b in place of p(j). In this variation the j-th component of the
unknown term is (p(j) − b) · (y − b) instead of p(j) · y and its approximation simply reduces to the approximation
of p(i) · y (i = 1, . . . , 5). The regularization parameter λ was set to 0.0001.

4.2 Blending to produce the five runs
Each of the five runs was a blend of multiple runs. This blending was done by ridge regression trained on the training
data using 5-fold cross validation results. In this blending, we again used the average of the input runs as base
prediction and trained for residual. The features were the differences of each run p from the base prediction b and

three vectors per run given by: v1,i =

{
pi − bi if pi < 0.5
0 otherwise , v2,i =

{
pi − bi if pi ≥ 0.5
0 otherwise , and v3,i ={

pi − bi if pi ≥ 1
0 otherwise , where subscript i indicates the i-th vector component. The regularization parameter was

set to 0.0005 for Run#2, 0.0001 for Run#5, and 0.001 for the rest.
The individual runs blended into five runs will be described in Appendix C .

4.3 Post processing
Post processing was applied to the final blend. Let Sa be the set of test data points for which Age is missing. Its
complement S̄a is the set of test data points for which Age is given. Similarly, define Ss and S̄s for Sex. Our post
processing was to match the average of the predictions within these four sets to the true average – first within Ss and
S̄s and then within Sa and S̄a. The “true average” of the targets within a subset can be estimated from the Leaderboard
scores by noting the following. Let s be the Leaderboard score of a “constant model” in [4], which sets a constant for
the data points in S and 0 for the data points in S̄. Then we have:

n · s2 ≈
∑
i∈S

(c− yi)2 +
∑
i∈S̄

y2
i = |S|c2 − 2c

∑
i∈S

yi +

n∑
i=1

y2
i .

where c is the constant in log-scale. On the right-hand side,
∑

i∈S yi in the second term is the desired quantity, the
third term can be approximated using the all-zero benchmark, and the first term is known.

Finally, we convert the log-scale prediction values to the desired scale and truncate the results into [0, 15].

References
[1] Rie Ando and Tong Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data.

Journal of Machine Learning Research, 6:1817–1853, 2005.

[2] Rie Ando and Tong Zhang. Two-view feature generation model for semi-supervised learning. In Proceedings of
the 24th International Conference on Machine Learning (ICML), 2007.

3

[3] Leo Breiman. Random forests. Machine Learning, 45:5–32, 2001.

[4] Phil Brierley, David Vogel, and Randy Axelrod. Heritage Provider Network Health Prize Round 1 Milestone Prize:
How we did it – Team ‘Market Makers’. https://www.heritagehealthprize.com/c/hhp/leaderboard/milestone1,
2011.

[5] Jerome Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29,
2001.

[6] Rie Johnson and Tong Zhang. Learning nonlinear functions using regularized greedy forest. Technical report,
arXiv:1109.0887v5, 2012.

[7] Greg Ridgeway. Package ‘gbm’. http://cran.r-project.org/web/packages/gbm/gbm.pdf, 2012.

[8] Andreas Töscher and Michael Jahrer. The BigChaos solution to the Netflix Grand Prize.
http://www.netflixprize.com/assets/GrandPrize2009 BPC BigChaos.pdf, 2009.

4

A Features
We first define several feature sets, which will be combined to compose ‘datasets’ in the next section. See [4] for the
definition of “velocity”, “range”, and “AdmissionRisk”; and conversion of categorical values to numerical values such
as DSFS and LengthOfStay.

A.1 Features derived from the member information: m1
Feature set: m1
Age numeric
Age missing binary flag
Age.0-9 binary flag
Age.10-19 binary flag
Age.20-29 binary flag
Age.30-39 binary flag
Age.40-49 binary flag
Age.50-59 binary flag
Age.60-69 binary flag
Age.70-79 binary flag
Age.80- binary flag
Male binary flag
Female binary flag
Gender unknown binary flag
ClaimsTruncated binary flag

A.2 Features derived from Claim data
Notation

• ‘1y’: aggregate the claim data in a one-year period.

• ‘2y’: aggregate the claim data in a two-year period.

• count: count of claims for that member in which the corresponding category appears. Blank (missing value)
was treated as a category only for Vendor, ProviderID, and PCP, and ignored (i.e., not counted) for others.

• The numbers in the parentheses are the number of features corresponding to the description. For example,
“PlaceSvc count (8)” in the first line means that there are eight features each of which is the count of one of
eight PlaceSvc categories (‘Ambulance’, ‘Home’, and so on) for the member. If omitted, the number of features
is one.

• ratio: count divided by the number of claims for the member. Blank (missing value) was treated as a category.

A.2.1 Feature sets t1, t3, w1, w2, and w3

Description Type Feature set
t1 t3 w1 w2 w3

PlaceSvc count (8) numeric 1y 1y 2y 2y 2y
Specialty count (12) numeric 1y 1y 2y 2y 2y
ProcedureGroup count (17) numeric 1y 1y 2y 2y 2y
PCGroup count (45) numeric 1y 1y 2y 2y 2y
ProviderID count (14700) numeric 1y 1y 2y 2y
Vendor count (6388) numeric 1y 1y 2y 2y
PCP count (1360) numeric 1y 1y 2y 2y

5

PlaceSvc×Specialty count (83) numeric 1y 1y 2y 2y
PlaceSvc×ProcedureGroup count (116) numeric 1y 1y 2y 2y
PlaceSvc×PCGroup count (320) numeric 1y 1y 2y 2y
Specialty×ProcedureGroup count (163) numeric 1y 1y 2y 2y
Specialty×PCGroup count (471) numeric 1y 1y 2y 2y
ProcedureGroup×PCGroup count (609) numeric 1y 1y 2y 2y
Specialty distinctive count numeric 1y 1y 2y 2y 2y
PlaceSvc distinctive count numeric 1y 1y 2y 2y 2y
PCGroup distinctive count numeric 1y 1y 2y 2y 2y
ProcedureGroup distinctive count numeric 1y 1y 2y 2y 2y
ProviderID distinctive count numeric 1y 1y 2y 2y
Vendor distinctive count numeric 1y 1y 2y 2y
PCP distinctive count numeric 1y 1y 2y 2y
PlaceSvc ratio (9) numeric 1y 1y 2y 2y 2y
Specialty ratio (13) numeric 1y 1y 2y 2y 2y
PCGroup ratio (46) numeric 1y 1y 2y 2y 2y
ProcedureGroup ratio (18) numeric 1y 1y 2y 2y 2y
DSFS min numeric 1y 1y 2y 2y
DSFS max numeric 1y 1y 2y 2y 2y
DSFS average numeric 1y 1y 2y 2y
DSFS standard deviation numeric 1y 1y 2y 2y
DSFS range numeric 1y 1y 2y 2y
DSFS> k?: k = 1, 2, . . . , 11 (11) binary flag 2y
CharlsonIndex min numeric 1y 1y 2y 2y
CharlsonIndex max numeric 1y 1y 2y 2y 2y
CharlsonIndex average numeric 1y 1y 2y 2y
CharlsonIndex.standard deviation numeric 1y 1y 2y 2y
CharlsonIndex range numeric 1y 1y 2y 2y
CharlsonIndex sum numeric 1y 1y
claim counts numeric 1y 1y 2y 2y 2y
LengthOfStay min numeric 1y 1y 2y 2y
LengthOfStay max numeric 1y 1y 2y 2y 2y
LengthOfStay avg numeric 1y 1y 2y 2y
LengthOfStay standard deviation numeric 1y 1y 2y 2y
LengthOfStay #missing numeric 1y 1y 2y 2y
LengthOfStay #suppressed numeric 1y 1y 2y 2y 2y
LengthOfStay #valid numeric 1y 1y 2y 2y
LengthOfStay sum numeric 1y 1y 2y 2y 2y
DrugCount min numeric 1y 1y 2y 2y
DrugCount max numeric 1y 1y 2y 2y
DrugCount average numeric 1y 1y 2y 2y
DrugCount range numeric 1y 1y 2y 2y
DrugCount #entry numeric 1y 1y 2y 2y 2y
DrugCount sum numeric 1y 1y 2y 2y 2y
DrugCount velocity numeric 1y 1y
DSFS-in-DrugCount> k?: k = 1, . . . , 11 (11) binary flag 2y
LabCount.min numeric 1y 1y 2y 2y
LabCount.max numeric 1y 1y 2y 2y
LabCount.avg numeric 1y 1y 2y 2y
LabCount.range numeric 1y 1y 2y 2y

6

LabCount.#entry numeric 1y 1y 2y 2y 2y
LabCount.sum numeric 1y 1y 2y 2y 2y
LabCount.velocity numeric 1y 1y
DSFS-in-LabCount> k?: k = 1, . . . , 11 (11) binary flag 2y
AdmissionRiskL70.max numeric 1y 1y 2y 2y 2y
AdmissionRiskL70.avg numeric 1y 1y 2y 2y
AdmissionRiskG70.max numeric 1y 1y 2y 2y 2y
AdmissionRiskG70.avg numeric 1y 1y 2y 2y
AdmissionRiskL70.sum numeric 1y 1y 2y 2y 2y
AdmissionRiskG70.sum numeric 1y 1y 2y 2y 2y
PlaceSvc×LengthOfStay (54) numeric 1y 2y
Specialty×LengthOfStay (38) numeric 1y 2y
ProcedureGroup×LengthOfStay (119) numeric 1y 2y
PCGroup×LengthOfStay (290) numeric 1y 2y
PlaceSvc×DSFS (96) numeric 1y 2y
Specialty×DSFS (144) numeric 1y 2y
ProcedureGroup×DSFS (204) numeric 1y 2y
PCGroup×DSFS (539) numeric 1y 2y
LengthOfStay×DSFS (119) numeric 1y 2y

A.2.2 Features mainly meant for linear models: `1 and `2

Feature set: `1 and `2
Description Discretization interval Type `1 `2
PlaceSvc count (8)

N/A

numeric 1y
Specialty count (12) numeric 1y
ProcedureGroup count (17) numeric 1y
PCGroup count (45) numeric 1y
ProviderID count (14700) numeric 1y
Vendor count (6388) numeric 1y
PCP count (1360) numeric 1y
PlaceSvc×Specialty count (83)

N/A

numeric 1y
PlaceSvc×ProcedureGroup count (116) numeric 1y
PlaceSvc×PCGroup count (320) numeric 1y
Specialty×ProcedureGroup count (163) numeric 1y
Specialty×PCGroup count (471) numeric 1y
ProcedureGroup×PCGroup count (609) numeric 1y
DSFS count (12)

N/A

numeric 1y
CharlsonIndex count (4) numeric 1y
LengthOfStay count (11) numeric 1y
DSFS-in-DrugCount count (12) numeric 1y
DSFS-in-LabCount count (12) numeric 1y
Specialty distinctive count> k? (8)

k = 1, 2, 3, 4, 5, 10, 15, 20

binary flag 1y
PlaceSvc distinctive count> k? (8) binary flag 1y
PCGroup distinctive count> k? (8) binary flag 1y
ProcedureGroup distinctive count> k? (8) binary flag 1y
ProviderID distinctive count> k? (8) binary flag 1y
Vendor distinctive count> k? (8) binary flag 1y
PCP distinctive count> k? (8) binary flag 1y

7

Vendor distinctive count> k? (8) binary flag 1y
PCP distinctive count> k? (8) binary flag 1y
#claim> k? (10) k = 1, 2, 3, 4, 5, 10, 15, 20, 30, 40 binary flag 1y
DSFS.max> k? (12) k = 1, 2, . . . , 12 binary flag 1y
CharlsonIndex.max> k? (4) k = 0, 2, 4, 6 binary flag 1y
DSFS-in-DrugCount.max> k? (12)

k = 1, 2, . . . , 12
binary flag 1y

DSFS-in-LabCount.max> k? (12) binary flag 1y
DrugCount.#entry> k? (7)

k = 0, 1, 2, 4, . . . , 10
binary flag 1y

LabCount.#entry> k? (7) binary flag 1y
DrugCount.sum> k? (10) k = 0, 1, 3, 5, 10, 20, . . . , 60 binary flag 1y
LabCount.sum> k? (12) k = 0, 1, 3, 5, 10, 20, . . . , 80 binary flag 1y
{Male|Female|?}×PlaceSvc count (24)

N/A

numeric 1y
{Male|Female|?}×Specialty count (36) numeric 1y
{Male|Female|?}×ProcedureGroup count (51) numeric 1y
{Male|Female|?}×PCGroup count (135) numeric 1y
(Age> k?)×{Male|Female|?} (27)

k = 0, 10, . . . , 80

binary flag 1y
(Age> k?)×PlaceSvc count (72) numeric 1y
(Age> k?)×Specialty count (108) numeric 1y
(Age> k?)×ProcedureGroup count (153) numeric 1y
(Age> k?)×PCGroup count (405) numeric 1y

A.2.3 Feature singletons: DiH, CT, CY

The feature sets defined below consist of one feature.

Feature set Description type
DiH DaysInHospital in the previous year; −1 if unknown. numeric
CT ClaimsTruncated in the previous year; −1 if unknown. {1, 0,−1}
CY Count of years in which the member has any claim numeric

A.2.4 Feature set: p1

Feature set p1 is an extension of pcp prob of [4]. Let f(x) denote the value of feature f for the member x, and let d(x)
be member x’s DaysInHospital in the next year. Considering the probability that d(·) > 0 conditioned on the value of
f(·) according to distribution D, we define

qf (m) =

{
Pr(d(x) > 0 | f(x) = 0)x∼D if f(m) = 0
Pr(d(x) > 0 | f(x) 6= 0)x∼D otherwise

Let F be a set of count features derived from the same original field, e.g., a set of eight count features derived from
PlaceSvc. Then for each member m, we derive the following three features:

max
f∈F

qf (m) , min
f∈F

qf (m) ,
∑
f∈F

qf (m) .

The conditional probabilities were estimated from the Y1 data with the Y2 target without smoothing. To cope with
the issue of rare events, we merged the features whose count of the event (either f(m) = 0 or f(m) 6= 0) is less
than 10 into one feature only for this purpose. We applied this procedure to PlaceSvc, Specialty, ProcedureGroup,
PrimaryConditionGroup, bigrams of these four, Vendor, ProviderID, and PCP, which resulted in 39 features.

8

A.3 ASO features: aso
We had four instances of ASO. In instance#1 and #2, the auxiliary tasks are in the form of predicting one view (target
view) based on another view (feature view) as follows:

• Instance#1. Target views: Table 3. Feature views: Table 4.

• Instance#2. Target views: Table 3. Feature views: Table 6.
The pairs of target view and feature view that overlap (e.g., ‘PlaceSvc counts’ and ‘PlaceSvc×Specialty counts’)
are excluded.

In #3 and #4, the prediction targets of the auxiliary tasks are the DaysInHospital predictions made by one view
(indirect-target view), and the features are another view (feature view).

• Instance#3. Indirect-target views: Table 5. Feature views: Table 4.

• Instance#4. Indirect-target views: Table 5. Feature views: views in Table 6.
The pairs of indirect-target view and feature view that overlap are excluded.

Note that construction of auxiliary problems in instance#1 and #2 follows the unsupervised strategy whereas that of
#3 and #4 follows the partially-supervised strategy; these strategies are discussed in Sections 4.2 of [1]. The auxiliary
tasks in #3 and #4 require as preprocessing training linear predictors to predict DaysInHospital from the indirect target
views. For the training on the auxiliary tasks (and preprocessing), all the Y1–Y3 data was used in instance#1 and #2,
and Y1 data was used with Y2 DaysInHospital in #3 and #4. The L2 regularization parameter was set to 0.001. The
dimensionality for these four ASO instances were set to 70, 50, 11, and 12, respectively. We call the concatenation of
the features generated by the four instances (therefore of dimensionality 143=70+50+11+12) feature set “aso”.

PlaceSvc counts
Specialty counts
ProcedureGroup counts
PCGroup counts
all the features in m1
all the features derived from CharlsonIndex in t1
all the features derived from LengthOfStay in t1
all the AdmissionRisk features in t1
all the features derived from DSFS in t1
all the features derived from DrugCount in t1
all the features derived from LabCount in t1

Table 3: Target views for ASO instance#1 and #2.

Vendor counts
ProviderID counts
PCP counts

Table 4: Feature views for ASO instance#1 and #3. One view per line.

9

all the features derived from PlaceSvc in `1
all the features derived from Specialty in `1
all the features derived from ProcedureGroup in `1
all the features derived from PCGroup in `1
all the features in m1all the features derived from CharlsonIndex in `1
all the features derived from LengthOfStay in `1
all the features derived from DSFS in `1
all the features derived from DrugCount in `1
all the features derived from LabCount in `1
all the features in `1 excluding those derived from Vendor, ProviderID, or PCP

Table 5: Indirect-target views for ASO instance#3 and #4. One view per line.

PlaceSvc×Specialty counts
PlaceSvc×ProcedureGroup counts
PlaceSvc×PCGroup counts
Specialty×ProcedureGroup counts
Specialty×PCGroup counts
ProcedureGroup×PCGroup counts
PlaceSvc×LengthOfStay counts
Specialty×LengthOfStay counts
ProcedureGroup×LengthOfStay counts
PCGroup×LengthOfStay counts
PlaceSvc×DSFS counts
Specialty×DSFS counts
ProcedureGroup×DSFS counts
PCGroup×DSFS counts
LengthOfStay×DSFS counts

Table 6: Feature views for ASO instance#2 and #4. One view per line.

B Datasets
Datasets, which were the actual input to training and application of the models, were generated from the feature sets
introduced above. There are 21 types of datasets. Some runs used them without change, and some runs added or
removed certain features, which will be described later.

Notation

• The target year is the year associated with DaysInHospital used as either the training target or test target (i.e.,
the values we predict). The test target year is always Y4. The training target year is shown in the table.

• Y−1 indicates the year before the target year, and Y−2 indicates the year two years before the target year. For
example, when Y3 is the training target year, Y−1 is Y2 and Y−2 is Y1. To apply the models to the test data,
the test target year is Y4, therefore, Y−1 is Y3 and Y−2 is Y2.

• For easier understanding, consider the feature sets such as t1 and t3 to be feature generators applied to the claim
data. For example, t1(Y−1) below means application of feature generator t1 to the claim data in year Y−1.
w1(Y−1,Y−2) applies w1 to the claim data in the two-year period from Y−2 to Y−1.

10

Dataset names Dataset content Training target year
t1 m1+t1(Y−1) Y3
t1w1 m1+t1(Y−1)+w1(Y−1,Y−2) Y3
t1w2 m1+t1(Y−1)+w2(Y−1,Y−2) Y3
t1w3 m1+t1(Y−1)+w3(Y−1,Y−2) Y3
t1t1 m1+t1(Y−1)+t1(Y−2) Y3
t1t1w1 m1+t1(Y−1)+t1(Y−2)+w1(Y−1,Y−2) Y3
t1t1w2 m1+t1(Y−1)+t1(Y−2)+w2(Y−1,Y−2) Y3
t1t1w3 m1+t1(Y−1)+t1(Y−2)+w3(Y−1,Y−2) Y3
t1* m1+t1(Y2); m1+t1(Y1) Y3;Y2
t3 m1+t3(Y−1) Y3
t3w1 m1+t3(Y−1)+w1(Y−1,Y−2) Y3
t3w2 m1+t3(Y−1)+w2(Y−1,Y−2) Y3
t3w3 m1+t3(Y−1)+w3(Y−1,Y−2) Y3
t3t3 m1+t3(Y−1)+t3(Y−2) Y3
t3t3w1 m1+t3(Y−1)+t3(Y−2)+w1(Y−1,Y−2) Y3
t3t3w2 m1+t3(Y−1)+t3(Y−2)+w2(Y−1,Y−2) Y3
t3t3w3 m1+t3(Y−1)+t3(Y−2)+w3(Y−1,Y−2) Y3
t3* m1+t3(Y2); m1+t1(Y1) Y3;Y2
u1 m1+`1(Y−1)+`2(Y−1) Y3
u1* m1+`1(Y2)+`2(Y2); m1+`1(Y1)+`2(Y1) Y3;Y2
u1u1 m1+`1(Y−1)+`2(Y−1)+`1(Y−2)+`2(Y−2) Y3

Note that the number of data points in t1*, t3*, and u1* is about twice that of the other datasets, and they serve
only as training data with a concatenation of Y3 target and Y2 target. In these datasets, there are two data points for
the members who have claims in both years. Other datasets serve as training data with the Y3 target and as test data
for predicting the Y4 target.

C Runs
Each of the five runs shown in Section 4 is a blend of multiple runs. Tables 7–12 show the individual runs blended
into those five runs.

Notation F<n denotes a set of features that have non-zero values for the data points fewer than n.

Datasets Add ... Remove ... Method
t1, t1w1, t1w2, t1w3, t1t1, t1t1w1, t1t1w2, t1t1w3, t1* None None RGF, GBDT
t3, t3w1, t3w2, t3w3, t3t3, t3t3w1, t3t3w2, t3t3w3, t3* None None RGF, GBDT
t3w1, t3w3, t3t3, t3t3w1, t3t3w3 DiH & p1 F<10 RGF, GBDT
t3, t3w1, t3w3, t3t3, t3t3w1, t3t3w3 DiH AdmRisk & F<100 RGF
t3, t3w1, t3w3, t3t3, t3t3w1, t3t3w3 DiH LoS.#supp & F<100 RGF
t3, t3w1, t3w3, t3t3, t3t3w1, t3t3w3 DiH UnkGender & F<100 RGF
u1* None None RGF, GBDT
u1u1 None F<10 RGF, GBDT
t3, t3w1, t3w3, t3t3, t3t3w1, t3t3w3 DiH F<100 RGF, GBDT

Table 7: Run#1 part1/2: RGF and GBDT

11

Datasets Remove ... Base Parameters for random forests
t3, t3t3, t3w1, t3w3 F<10 R(t1*), G(t1*) m = 50, r = 0.33, n = 50
t1w1, t1w2, t1t1w1, t1t1w2 None R(t1*), R(t3t3w3) m = 100, r = 0.3, n = 50
t1w3, t1t1w3 None R(t1*), R(t3t3w3) m = 100, r = 0.2, n = 50
t3w1, t3w2, t3w3, t3t3w1, t3t3w2, t3t3w3 None R(t1*), R(t3t3w3) m = 100, r = 0.2, n = 50

Table 8: Run#1 part2/2: Random forests trained for residual of RGF or GBDT. m: the minimum training data points
per node; r: feature sampling ratio; n: the number of trees. No data sampling. In the ‘Base’ column, R(x) is an RGF
run applied to dataset x, and G(x) is a GBDT run applied to dataset x.

Datasets Add ... Remove ... Method
t3, t3w1, t3w3, t3t3, t3t3w1, t3t3w3 DiH F<100 RGF, GBDT
t3, t3w1, t3w3, t3t3, t3t3w1, t3t3w3 DiH& CT F<100 RGF, GBDT
t3, t3w1, t3w3, t3t3, t3t3w1, t3t3w3 CT F<100 RGF, GBDT

Table 9: Run#2: RGF and GBDT

Datasets Add. Rmv. Conversion Base
u1 aso F<10 x← log(x+ 1) R(t1*), G(t1*), R(t3*), G(t3*), R(t3t3w3), G(t3t3w3)
u1* aso F<10 x← log(x+ 1) R(t1*), G(t1*), R(t3*), G(t3*)
u1 aso F<10 x←min(1, log(x+ 1)) R(t1*), G(t1*), R(t3*), G(t3*), R(t3t3w3), G(t3t3w3)
u1* aso F<10 x←min(1, log(x+ 1)) R(t1*), G(t1*), R(t3*), G(t3*)
u1, u1* – F<10 x←min(1, log(x+ 1)) R(t1*), G(t1*), R(t3*), G(t3*)
u1, u1* – F<10 x← log(x+ 1) R(t1*), G(t1*), R(t3*), G(t3*)

Table 10: Run#3: Linear models trained for residual of RGF or GBDT. In the ‘Base’ column, R(x) is an RGF run
applied to dataset x, and G(x) is a GBDT run applied to dataset x.

Datasets Add ... Remove ... Method
t3w1, t3w3, t3t3, t3t3w1, t3t3w3 CY& DiH& p1 F<100 RGF
t1w1, t1w3, t1t1, t1t1w1, t1t1w3, CY F<10 RGF, GBDTt3w1, t3w3, t3t3, t3t3w1, t3t3w3

Table 11: Run#4: RGF and GBDT. For each combination of datasets and methods, two runs were performed: one
with model size 10000 (in terms of the number of leaf nodes in the forest) and the other with model size 20000.

Datasets Add ... Remove ... Method
t3, t3w1, t3w3, t3t3, t3t3w1, t3t3w3 DiH& CT F<100 RGF, GBDT
t3, t3w1, t3w3, t3t3, t3t3w1, t3t3w3 CT F<100 RGF, GBDT

Table 12: Run#5 RGF and GBDT

12

	Introduction
	Algorithms
	Regularized greedy forest (RGF)
	Gradient boosting decision tree (GBDT)
	Random forests combined with RGF/GBDT
	Linear models combined with RGF/GBDT and ASO

	Features
	Blending and post processing
	Blending to produce the winning submission
	Blending to produce the five runs
	Post processing

	Features
	Features derived from the member information: m1
	Features derived from Claim data
	Feature sets t1, t3, w1, w2, and w3
	Features mainly meant for linear models: 1 and 2
	Feature singletons: DiH, CT, CY
	Feature set: p1

	ASO features: aso

	Datasets
	Runs

