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1 Introduction

My milestone 1 solution to the Heritage Health Prize with a RMSLE score of 0.457239 on the leaderboard
consists of a linear blend of 21 result. These are mostly generated by relatively simple models which are all
trained using stochastic gradient descent. First in section 2 I provide a description of the way the data is
organized and the features that were used. Then in section 3 the training method and the post-processing steps
are described. In section 4 each individual model is brie�y described, all the relevant meta-parameter settings
can be found in appendix Parameter settings. Finally the weights in the �nal blend are given in section 5.

2 The data

2.1 Data organization

Most models are build on only the release 2 data. In this dataset there is some basic information about the
members like sex and age and there is claim data available for three years: Y1, Y2 and Y3. Finally there is
Days-In-Hospital (DIH) data for Y2 and Y3. The goal is to predict Y4 DIH. One way to build a prediction
model is using the following 'one-year-history' setup:

One year claims

Training
member data, Y1 claim data � Y2 DIH
member data, Y2 claim data � Y3 DIH

Prediction member data, Y3 claim data � Y4 DIH

Here one year of claim data is used to predict the days in hospital for next year. This organization has as
disadvantage that you make the �nal Y4 predictions based only on the claim data of Y3. An alternative is the
following 'two-year-history' setup:

Two years claims
Training member data, Y1 & Y2 claim data, Y2 DIH � Y3 DIH

Prediction member data, Y2 & Y3 claim data, Y3 DIH � Y4 DIH

Using this data organisation there is more data available for the Y4 DIH prediction but only Y3 DIH to learn
from instead of Y2 and Y3. Nineteen models are build using the 'one-year-history' data organization, two models
(SigCatVec3c-Y3 and SigCatVec4) are build using the 'two-year-history' data organisation. Since I don't have
a lot of experience with the second setup I can't say whether one is more e�ective then the other but using both
certainly helps in the blend.

The last model (SigClaimVec7) also use the drug and lab data provided with the release 3 data. This data is
also used using the 'one-year-history' organisation.

2.2 Features

Some of the columns in the data �les contain numeric values, others text values. Many columns also have some
missing values. In table 1 all used columns are listed. It also lists the number of categories found for each
column. Some models use each claim record separately, others use the set of distinct categories over all claim
records for a member in a particular year. Some models also use the number of times a category occurs for a
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File Column Number of
categories

MC0 MC1 MC2 MC3

Members
AgeAtFirstClaim 10     

Sex 3     

DaysInHospital
ClaimsTrunctated 2
DaysInHospital 16  (previous year)

Claims

ProviderID 14700  
Vendor 6388  
PCP 1360  

PCP (last claim) 1360  
Specialty 13     
PlaceSvc 9     
PayDelay - (not used)

LengthOfStay 11    
DSFS 13    

PrimaryConditionGroup 46    
CharlsonIndex 6    
ProcedureGroup 18    

SupLOS 2    

DrugCount DrugCount 7

LabCount LabCount 10

Table 1: Data columns

member. In the models three such sets are used, MC1m, MC2m and MC3m for each member m. The columns
used to build each of these sets are listed in the table 1 in the columns MC1, MC2 and MC3.

MC0 is provided for an example: suppose we have a member x with age=40, sex=male who has two claims,
claim 1 with Specialty=Emergency, PlaceSvc=Urgent Care and claim 2 with Specialty=Diagnostic Imaging,
PlaceSvc=Urgent Care. This gives the following set and counts:

MC0x = {40, male, emergency, diagnostic imaging, urgent care}

countx,40 = 1

countx,male = 1

countx,emergency = 1

countx,diagnostic imaging = 1

countx,urgent care = 2

2



In the describtions of the models the following variables are used to reference the columns in the data �les:
sexm sex of member m
agem age of member m
truncatedm 1 if claims for member m were truncated, 0

otherwise
nclaimsm number of claims for member m
providerc provider for claim c
vendorc vendor for claim c
pcpc primary care physician for claim c
specialtyc specialty for claim c
placec place of service for claim c
losc length of stay for claim c
dsfsc days since �rst service for claim c
dtlsc 'days till last service' (maximum days since �rst

service for the member minus days since �rst
service) for claim c

pcgc primary condition group for claim c
charlsonIndexc Charlson index for claim c
pgc procedure group for claim c
suplosc 1 if length of stay for claim c was truncated, 0

otherwise

3 Training and predicting

3.1 Training method

All models are trained to model ln(DIH + 1) instead of DIH. This simpli�es the RMSLE scoring measure to
the more standard RMSE. Only when a submission �le is generated the ln(DIH +1) values are converted back
to DIH values.

The models are trained using a stochastic gradient descent1 without mini-batches. For each parameter to learn
there is a learning rate η and a shrinkage parameter λ. For each training case (a member, year combination)
all applicable parameters are updated using the update rule: fi ← (1− ηλ) · fi + η · gradient.
The number of iterations through the dataset is not the same for all models. A common approach is to stop
as soon as the score for a validation set starts to increase. I have taken a di�erent approach; the learning rates
are optimized for a �xed number of iterations. The iterations are split up in a number of phases, each phase
has its own set of learning rates. For some models this leads to a large number of learning rates to optimize.
This optimization process is vital to get good results but doing this manually is extremely time consuming.
Therefore I used some automated procedures for the optimization process (along with some manual tuning).
The methods used were Nelder-Mead2 and a simpli�ed Rosenbrock algorithm3. The rotation of the coordinate
system that is used in this algorithm turned out to be ine�ective in most cases so this function was removed
from the algorithm. Also the the step sizes were adjusted to �t this particular problem. When a change is
succesful the stepsize is multiplied by 1.3, when a change is not succesful the stepsize is multiplied by -0.5 and
the initial stepsize is 0.1 times the current parameter value. When convergence of the automated procedure
was going very slowly even though the accuracy was not near the expected optimum (close to the accuracy of
a similar model) I set one or a few of the model parameters to a very di�erent value to get out of the local
minimum or plateau. After such a manual intervention the automated procedure was continued. The �nal
model parameters for each model can be found in appendix A.

For each model in the section 4 all the learning rates are given for each phase. If the λ parameter is omitted
the value is 0. The parameter values are written in the full numerical precision as they were used. Most of the
time only the �rst two or three digits are signi�cant, the rest is only included for completeness.

3.2 Parameter initialization

The models use both scalar parameters and vector parameters. Scalar parameters are initialized to zero unless
speci�ed otherwise. For vectors it is a bit di�erent. Vectors are usually used in a product with an other vector

1http://en.wikipedia.org/wiki/Stochastic_gradient_descent
2http://en.wikipedia.org/wiki/Nelder-Mead_method
3http://www.applied-mathematics.net/optimization/rosenbrock.html
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parameter. When all vectors are initialized to zero all gradients would be zero and the gradient descent would
be stuck right at the initial state. So at least one of the vectors in a vector product should be none zero.
Therefore all elements of each vectors are initialized using samples from a uniform random distribution between
-0.01 and +0.01 unless stated otherwise (some experimentation showed that for some vectors an initial value of
~0 or ~1 gives better results).

3.3 Making predictions

Each model can be used directly to make predictions for Y4 DIH. In practice however many models generate
predictions with too much variance. To get better predictions the variance can be reduced by averaging the
predictions of the model when trained on several di�erent subsets of the data. Each of these subsets is used to
generate a complete Y4 DIH prediction. The left-out set is always non-overlapping, so each data point is only
excluded once. The �nal prediction for the model is the arithmetic mean of the ln(DIH + 1) predictions for
each of the training runs.

For each model exactly one of the methods in table 2 is used. The �rst three use only a single training run and
may produce predictions with somewhat high variance. The last two method use multiple runs whose results
are then averaged, these methods produce predictions with lower variance.

Method Runs Data used per run
Qualifying 1 100%

Qualifying (Y1 only) 1 50% (using only Y1)

Qualifying (70%) 1 70% (30% never used)

Qualifying (CV 4) 4 75%

Qualifying (CV 10) 10 90%

Table 2: Prediction methods

3.4 Post processing

For some models an additional post-processing step is used. When a model predicts an extreme value it is
almost always a good idea to adjust this prediction towards the mean. This idea was e�ectively used by Edward
de Grijs in the Net�ix Prize competition and proved to be useful here as well. The formula used is:

p̃m = min(ccmax,max(ccmin, ccbias + ccslope · pm))

p̂m = 0.5 (2p̃m)
(cca+ccb·p̃m+ccc·p̃m·p̃m)

Where pm is the original prediction of the model and p̂m is the �nal prediction. ccbias, ccslope, ccmin, ccmax, cca,
ccb and ccc are parameters which are optimized using the simpli�ed Rosenbrock algorithm. The used parameter
values can be found in appendix A.

4 The models

4.1 CatVec1

The CatVec1 model learns two feature vectors of dimension 4 per distinct category in the MC2 set.

fi vector of dimension 4 for category i
gi vector of dimension 4 for category i

pm =

( ∑
i∈MC2m

fi

)T ( ∑
i∈MC2m

gi

)

The summation is over the elements in the setMC2m, so if member m has an age 50-59 then the set will include
"AgeAtFirstClaim=50-59" and the summation will include this category. If the member has a di�erent age the
set will not include "AgeAtFirstClaim=50-59" and the summation will not include this category.
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To illustrate the stochastic gradient descent the complete update rules for this model are given here:

em = ln(1 +DIHm)− pm

f̂i = (1− λfηf )fi + ηfe

 ∑
j∈MC2m

gj


ĝi = (1− λgηg)g + ηge

 ∑
j∈MC2m

fj


fi ← f̂i

gi ← ĝi

4.2 CatVec2

This model is identical to the CatVec1 model except for the parameter settings.

4.3 CatVec3

This model is similar to the CatVec1 model but this time a log function is added.

pm = ln

1 +

( ∑
i∈MC2m

fi

)T ( ∑
i∈MC2m

gi

)
Note the for this model the log function is not used in the calculation of the gradients, i.e. the update rules are
identical to the update rules for CatVec1.

4.4 SigCatVec1

The model uses one feature vector of dimension 12 per distinct category. First these applicable vectors are
summed. After that a sigmoid transformation is applied to each of the elements of the sum vector. Finally a
single 'score' vector s is used as a weighting for each of the vector elements.

pm = sTσ

( ∑
i∈MC2m

fi

)

Where σ is the sigmoid function de�ned as σ(x) = 1
1+e−x .

4.5 SigCatVec2

This model is identical to the SigCatVec1 model except that the vector dimension is set to 40 for this model.

4.6 SigCatVec3a

This model is similar to theSigCatVec1 model but adds a factor for the number of occurences of each category
within the member.

pm = sTσ

( ∑
i∈MC1m

(fi + gi · countm,i)

)
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4.7 SigCatVec3b

This model is the same as the SigCatVec3a model but uses di�erent parameter settings.

4.8 SigCatVec3c-Y3

This model is similar to the SigCatVec3a model but for this model the 'two-year-history' data organisation is
used as described in section 2.1. Due to a bug in my code this model generated a prediction for Y3 which was
used as the prediction for Y4.

4.9 SigCatVec4

This model is similar to the SigCatVec3c-Y3 model but without the bug and using the MC3 set instead of the
MC1 set.

pm = sTσ

( ∑
i∈MC3m

(fi + gi · countm,i)

)

4.10 SigCatVec5

This model is similar to theSigCatVec3a model but adds an additional weighting vector h. This vector is
initialized by setting each element to 1.

pm = sTσ

( ∑
i∈MC1m

(fi + gi · countm,i) ◦ hi

)

Where ◦ denotes the Hadamard (pointwise) product4.

4.11 SigCatVec6

This model is similar to theSigCatVec5 model except that the square root of the count is used.

pm = sTσ

( ∑
i∈MC1m

(
fi + gi

√
countm,i

)
◦ hi

)

4.12 SigCatVec7

This model is similar to theSigCatVec6 model except that set MC2 is used instead of set MC1.

pm = sTσ

( ∑
i∈MC2m

(
fi + gi

√
countm,i

)
◦ hi

)

4.13 SigCatVec8

This model is the same as the SigCatVec7 model but with di�erent parameters and an additional postprocessing
step as described in section Post processing.

4http://en.wikipedia.org/wiki/Matrix_multiplication
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4.14 PerClaim

This model is very di�erent from the previous models. In the previous models all variables (sex, age, place,
specialty, etc) were traited equaly. In this model some variables have di�erent learning rates and weightings
then others. For example the claim parameters are scaled with the inverse square root of the number of claims
but the member parameters are not scaled. In general variables are treated di�erently based on their meaning.
The table below lists all the learned parameters. (Note: the double claim bias was an error and should not have
a positive e�ect on the result).

Variable Description Learning rate
msi scalar for member sex i η1
mai scalar for member age i η1
mt scalar η1
cbias1 scalar η1
cbias2 scalar η1
cpri scalar for claim provider i η1
cvi scalar for claim vendor i η1
cpcpi scalar for claim primary care physician i η1
csi scalar for claim specialty i η1
cpli scalar for claim place i η1
cli scalar for claim los i η1
cpcgi scalar for claim primary condition group i η1
charlson scalar η1
cpgi scalar for claim procedure group i η1
csli scalar for claim suplos i η1
ispi,j scalar for claim combination of specialty i and primary condition group j η1
iai,j scalar for claim combination of age i and primary condition group j η1
isi,j scalar for claim combination of sex i and primary condition group j η1
ipli,j scalar for claim combination of place i and primary condition group j η1
vms1i vector for member sex i η2
vms2i vector for member sex i η3
vma1i vector for member age i η2
vma2i vector for member age i η3
vcs1i vector for claim specialty i η2
vcs2i vector for claim specialty i η3
vcp1i vector for claim place of service i η2
vcp2i vector for claim place of service i η3
vcpcg1i vector for claim primary condition group i η2
vcpcg2i vector for claim primary condition group i η3

These parameters are combined into the following model

memberm = mssexm
+maagem +mt · truncatedm

basec = cbias1 + cbias2 + cprproviderc + cvvendorc + cpcppcpc
+ csspecialtyc

+ cpplacec + cllosc + cpcgpcgc

+charlson · charlsonIndexc + cpgpgc + cslsuplosc

interactionc = ispspecialtyc,pcgc + iaspecialtyc,pcgc + isspecialtyc,pcgc + iplspecialtyc,pcgc

claimsm =
∑

c∈claimsm

(basec + interactionc)√
nclaimsm

vecm =

(
vms1sexm + vma1sexm +

∑
c∈claimsm

(vcs1specialtyc + vcp1placec + vcpcg1pcgc)

)T

(
vms2sexm

+ vma2sexm
+

∑
c∈claimsm

(vcs2specialtyc
+ vcp2placec + vcpcg2pcgc

)

)
pm = ln (1 + clamp (mean+memberm + claimsm + vecm))

Where the clamp function is de�ned as clamp(x) = min(15, max(0, x)).
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4.15 SigClaimVec1

This model is similar to the PerClaim model but uses vectors instead of scalars for most variables. The dimension
of all vectors in this model is 12. (Note: the three claim bias vectors were accidentaly introduced, one should be
su�cient). Also it adds a set of parameters to further tune the learning rates, these new parameters are �xed
over the phases in order to limit the total number of parameters.

Variable Description Learning rate
mbias vector η1
msi vector for member sex i η1
mai vector for member age i η1
cbias1 vector η2 · wbias1

cbias2 vector η2 · wbias2

cbias3 vector η2 · wbias3

cpri vector for claim provider i η2 · wprovider

cvi vector for claim vendor i η2 · wvendor

cpcpi vector for claim primary care physician i η2 · wpcp

csi vector for claim specialty i η2 · wspecialty

cpli vector for claim place i η2 · wplace

cli vector for claim los i η2 · wlos

cdsfsi vector for claim days since �rst service i η2 · wdsfs

cpcgi vector for claim primary condition group i η2 · wpcg

cpgi vector for claim proceduregroup i η2 · wpg

ispi,j vector for claim combination of specialty i and primary condition group j η3
iai,j vector for claim combination of age i and primary condition group j η3
isi,j vector for claim combination of sex i and primary condition group j η3
ipli,j vector for claim combination of place i and primary condition group j η3
s vector η4

These parameters are combined into the following model

memberm = mbias+mssexm +maagem

basec = cbias1 + cbias2 + cbias3 + cprproviderc + cvvendorc + cpcppcpc

+csspecialtyc + cpplacec + cllosc + cpcgpcgc + cpgpgc

interactionc = ispspecialtyc,pcgc + iaspecialtyc,pcgc + isspecialtyc,pcgc + iplspecialtyc,pcgc

claimsm =
∑

c∈claimsm

σ (basec + interactionc)

pm = ln
(
1 + clamp

(
sTσ (memberm + claimsm)

))
4.16 SigClaimVec2

This model is the same as the SigClaimVec1 model except for the learning rates and an additional learning
phase.
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Variable Description Learning rate
mbias vector η1 · wbias

msi vector for member sex i η1 · wsex

mai vector for member age i η1 · wage

cbias1 vector η2 · wbias1

cbias2 vector η2 · wbias2

cbias3 vector η2 · wbias3

cpri vector for claim provider i η2 · wprovider

cvi vector for claim vendor i η2 · wvendor

cpcpi vector for claim primary care physician i η2 · wpcp

csi vector for claim specialty i η2 · wspecialty

cpli vector for claim place i η2 · wplace

cli vector for claim los i η2 · wlos

cdsfsi vector for claim days since �rst service i η2 · wdsfs

cpcgi vector for claim primary condition group i η2 · wpcg

cpgi vector for claim proceduregroup i η2 · wpg

ispi,j vector for claim combination of specialty i and primary condition group j η3 · wisp

iai,j vector for claim combination of age i and primary condition group j η3 · wia

isi,j vector for claim combination of sex i and primary condition group j η3 · wis

ipli,j vector for claim combination of place i and primary condition group j η3 · wipl

s vector η4

4.17 SigClaimVec3

This model is identical to the SigClaimVec2 model except this one has 4 phases again and adds a post-processing
step as described in section 3.4.

4.18 SigClaimVec4

This model is similar to the SigClaimVec3 model but adds a few interaction variables and adds a weighting of
the claims depending on the time until the last claim in the current year (dtls as described in section Features).

Variable Description Learning rate
mbias vector η1 · wbias

msi vector for member sex i η1 · wsex

mai vector for member age i η1 · wage

msai,j vector for member sex i and age j (initial value: ~0) η1 · wsexage

cbias1 vector η2 · wbias1

cbias2 vector η2 · wbias2

cbias3 vector η2 · wbias3

cpri vector for claim provider i η2 · wprovider

cvi vector for claim vendor i η2 · wvendor

cpcpi vector for claim primary care physician i η2 · wpcp

csi vector for claim specialty i η2 · wspecialty

cpli vector for claim place i η2 · wplace

cli vector for claim los i η2 · wlos

cdsfsi vector for claim days since �rst service i η2 · wdsfs

cpcgi vector for claim primary condition group i η2 · wpcg

cpgi vector for claim proceduregroup i η2 · wpg

ispi,j vector for claim combination of specialty i and primary condition group j η3 · wisp

iai,j vector for claim combination of age i and primary condition group j η3 · wia

isi,j vector for claim combination of sex i and primary condition group j η3 · wis

ipli,j vector for claim combination of place i and primary condition group j η3 · wipl

ispli,j vector for claim combination of sex i and place j (initial value: ~0) η3 · wispl

iapli,j vector for claim combination of age i and place j (initial value: ~0) η3 · wiapl

s vector η4
cdtlsi scalar for claim days till last service i (initial value: ~1) η5

These parameters are combined into the following model
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memberm = mbias+mssexm +maagem

basec = cbias1 + cbias2 + cbias3 + cprproviderc + cvvendorc + cpcppcpc

+csspecialtyc + cpplacec + cllosc + cpcgpcgc + cpgpgc

interactionc = ispspecialtyc,pcgc + iaspecialtyc,pcgc + isspecialtyc,pcgc + iplspecialtyc,pcgc + isplsexc,placec + iaplagec,placec

claimsm =
∑

c∈claimsm

cdtlsc · σ (basec + interactionc)

pm = ln
(
1 + clamp

(
sTσ (memberm + claimsm)

))
4.19 SigClaimVec5

This model is identical to the SigClaimVec4 model except for the parameters.

4.20 SigClaimVec6

This model is very similar to the SigClaimVec4 model but adds the claims truncated variable.

Variable Description Learning rate
mbias vector η1 · wbias

msi vector for member sex i η1 · wsex

mai vector for member age i η1 · wage

msai,j vector for member sex i and age j (initial value: ~0) η1 · wsexage

mti vector for member claims truncated i (initial value: ~0) η1 · wtruncated

cbias1 vector η2 · wbias1

cbias2 vector η2 · wbias2

cbias3 vector η2 · wbias3

cpri vector for claim provider i η2 · wprovider

cvi vector for claim vendor i η2 · wvendor

cpcpi vector for claim primary care physician i η2 · wpcp

csi vector for claim specialty i η2 · wspecialty

cpli vector for claim place i η2 · wplace

cli vector for claim los i η2 · wlos

cdsfsi vector for claim days since �rst service i η2 · wdsfs

cpcgi vector for claim primary condition group i η2 · wpcg

cpgi vector for claim proceduregroup i η2 · wpg

ispi,j vector for claim combination of specialty i and primary condition group j η3 · wisp

iai,j vector for claim combination of age i and primary condition group j η3 · wia

isi,j vector for claim combination of sex i and primary condition group j η3 · wis

ipli,j vector for claim combination of place i and primary condition group j η3 · wipl

ispli,j vector for claim combination of sex i and place j (initial value: ~0) η3 · wispl

iapli,j vector for claim combination of age i and place j (initial value: ~0) η3 · wiapl

s vector η4
cdtlsi scalar for claim days till last service i (initial value: ~1) η5
mt2i scalar for member claims truncated i η6

These parameters are combined into the following model

memberm = mbias+mssexm
+maagem +mttruncatedm

basec = cbias1 + cbias2 + cbias3 + cprproviderc + cvvendorc + cpcppcpc

+csspecialtyc
+ cpplacec + cllosc + cpcgpcgc + cpgpgc

interactionc = ispspecialtyc,pcgc + iaspecialtyc,pcgc + isspecialtyc,pcgc + iplspecialtyc,pcgc + isplsexc,placec + iaplagec,placec

claimsm =
∑

c∈claimsm

cdtlsc · σ (basec + interactionc)

pm = ln
(
1 + clamp

(
sTσ (memberm + claimsm)

))
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4.21 SigClaimVec7

This model is the similar to the SigClaimVec6 model but adds the supressed length of stay, charlson index, lab
count and drug count variables.

Variable Description Learning rate
mbias vector η1 · wbias

msi vector for member sex i η1 · wsex

mai vector for member age i η1 · wage

msai,j vector for member sex i and age j (initial value: ~0) η1 · wsexage

mti vector for member claims truncated i (initial value: ~0) η1 · wtruncated

cbias1 vector η2 · wbias1

cbias2 vector η2 · wbias2

cbias3 vector η2 · wbias3

cpri vector for claim provider i η2 · wprovider

cvi vector for claim vendor i η2 · wvendor

cpcpi vector for claim primary care physician i η2 · wpcp

csi vector for claim specialty i η2 · wspecialty

cpli vector for claim place i η2 · wplace

cli vector for claim los i η2 · wlos

cdsfsi vector for claim days since �rst service i η2 · wdsfs

cpcgi vector for claim primary condition group i η2 · wpcg

cpgi vector for claim proceduregroup i η2 · wpg

csupi vector for claim supressed length of stay i (initial value: ~0) η2 · wsuplos

cchi vector for claim charlson index i (initial value: ~0) η2 · wcharlson

ispi,j vector for claim combination of specialty i and primary condition group j η3 · wisp

iai,j vector for claim combination of age i and primary condition group j η3 · wia

isi,j vector for claim combination of sex i and primary condition group j η3 · wis

ipli,j vector for claim combination of place i and primary condition group j η3 · wipl

ispli,j vector for claim combination of sex i and place j (initial value: ~0) η3 · wispl

iapli,j vector for claim combination of age i and place j (initial value: ~0) η3 · wiapl

s vector η4
cdtlsi scalar for claim days till last service i (initial value: ~1) η5
mt2i scalar for member claims truncated i η6
lcnti vector for lab count i (initial value: ~0) η7 · wlab

dcnti vector for drug count i (initial value: ~0) η7 · wdrug

These parameters are combined into the following model

memberm = mbias+mssexm +maagem +mttruncatedm

basec = cbias1 + cbias2 + cbias3 + cprproviderc + cvvendorc + cpcppcpc

+csspecialtyc + cpplacec + cllosc + cpcgpcgc + cpgpgc + csupsuplosc + cchcharlsonIndexc

interactionc = ispspecialtyc,pcgc + iaspecialtyc,pcgc + isspecialtyc,pcgc + iplspecialtyc,pcgc + isplsexc,placec + iaplagec,placec

claimsm =
∑

c∈claimsm

cdtlsc · σ (basec + interactionc)

labsm =
∑

l∈labsm

lcntl

drugsm =
∑

d∈drugsm

dcntd

pm = ln
(
1 + clamp

(
sTσ (memberm + claimsm + labsm + drugsm)

))
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5 Final blend

From the beginning of this contest I choose not to build a single very very good model but instead create
di�erent models each modeling the variation di�erently. Initially I did not expect to be required to reproduce
all results almost perfectly. Therefore many of the early results could not be used. The models in the �nal
blend are a selection of the models I could reproduce exactly. The �nal result is a linear combination of the
log+1 predictions of all the 21 models described in section4. Unfortunately no probeset is provided in this
competition. Because of the di�erent trainingsets and prediction methods used by the di�erent models it is
hard to construct a dataset that can be used e�ectively for blending without introducing a bias. Therefore
I choose to use the approach suggested by R. Bell and Y. Koren, and C. Volinsky in �The BellKor solution
to the Net�ix Prize�, http://www.netflixprize.com/assets/ProgressPrize2007_KorBell.pdf, 2007. The
technique comes down to performing a ridge regression5 based on the leaderboard scores. The regularization
parameter α was chosen as 0.0015 * 70492. (For a more complete describtion of the technique see section 7 of
this paper: http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf). The �nal weights
are:

Model RMSLE (Leaderboard) Weight
All mean 0.486459 -0.120177096860407

CatVec1 0.475757 0.0644039235679331

CatVec2 0.466581 -0.11197527538219

CatVec3 0.466570 -0.104862676479977

SigCatVec1 0.464373 0.162280493887463

SigCatVec2 0.465728 -0.0894110617494495

PerClaim 0.464028 0.0811531937177599

SigCatVec3a 0.463635 0.0813467144179884

SigCatVec5 0.462524 0.152820826103983

SigCatVec3c-Y3 0.475019 0.229896200534371

SigCatVec4 0.464062 0.153655337312371

SigCatVec3b 0.465550 -0.124937912869077

SigCatVec7 0.464516 0.132332995001435

SigCatVec6 0.463269 -0.0801709488833528

SigClaimVec1 0.461875 -0.108108296818349

SigClaimVec2 0.461792 -0.0880275674421306

SigClaimVec3 0.460468 0.150244352469803

SigCatVec8 0.463125 0.0900888972980376

SigClaimVec4 0.461351 0.0730948061470501

SigClaimVec5 0.460345 0.131935900519871

SigClaimVec6 0.460402 0.122608906537375

SigClaimVec7 0.460564 0.200886991699764

5http://en.wikipedia.org/wiki/Tikhonov_regularization
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A Parameter settings

A.1 CatVec1

Phase 1 Phase 2 Phase 3
number of iterations 20 50 20

ηf 0.0002649423 0.0002470584 4.470347E-06

λf 0.1 0.1 0.1

ηg 0.001985118 0.003892777 1.490114E-06

λg 0.1 0.1 0.1

Prediction method Qualifying

A.2 CatVec2

Phase 1 Phase 2 Phase 3
number of iterations 20 50 20

ηf 1.112269E-06 3.853279E-05 2.598553E-07

ηg 0.0004327906 4.473469E-06 4.490988E-08

Prediction method Qualifying

A.3 CatVec3

Phase 1 Phase 2 Phase 3 Phase 4
number of iterations 5 5 5 5

ηf 4.177898E-05 0.001355331 0 2.609307E-06

ηg 0.0004036372 0.0003165317 3.915297E-05 7.51259E-07

Prediction method Qualifying

A.4 SigCatVec1

Phase 1 Phase 2 Phase 3 Phase 4
number of iterations 5 5 5 5

ηf 0.001578477 0.004677286 0.02737434 0

ηs 0.0004944247 0.0001497822 0 0.0004102637

Prediction method Qualifying

A.5 SigCatVec2

Phase 1 Phase 2 Phase 3 Phase 4
number of iterations 5 5 5 5

ηf 0.316035 0.008788005 0.02413593 0.0004140852

ηs 0.0008625013 0 0 0

Prediction method Qualifying

A.6 SigCatVec3a

Phase 1 Phase 2 Phase 3 Phase 4
number of iterations 5 5 5 5

ηf 0.02075013 0.08779071 0.01074343 0.0001728464

ηg 2.772494E-05 0.0001966873 0.0002280947 1.146167E-06

ηs 0.002876806 0.02247584 0 9.332498E-06

Prediction method Qualifying
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A.7 SigCatVec3b

Phase 1
number of iterations 200

ηf 0.0003261481

ηg 8.437122E-05

ηs 0.0001342874

Prediction method Qualifying

A.8 SigCatVec3c-Y3

Phase 1 Phase 2 Phase 3 Phase 4
number of iterations 5 5 5 5

ηf 0.0003823006 0.002848325 0.004719815 2.123389E-05

ηg 6.396919E-05 0.000264585 0.0001864179 1.758224E-06

ηs 0.0001432812 0.0005024222 0.0008601856 7.672917E-06

Prediction method Qualifying

A.9 SigCatVec4

Phase 1 Phase 2 Phase 3 Phase 4
number of iterations 5 5 5 5

ηf 0.002148289 0.08317175 0.1350184 0.001309502

ηg 0.0001728866 0.0002815352 3.191739E-05 1.296711E-08

ηs 0.001004071 0.01075159 6.94342E-08 1.916467E-10

Prediction method Qualifying (CV 4)

A.10 SigCatVec5

Phase 1 Phase 2 Phase 3 Phase 4
number of iterations 5 5 5 5

ηf 0.02445947 0.06469206 0.002567296 0.0001044714

ηg 4.443048E-06 0.000822987 0.0005028971 8.60439E-06

ηh 1.315885E-05 0.005095374 0.01023562 2.814549E-06

ηs 0.002808467 0.01118349 0.001010632 1.378307E-08

Prediction method Qualifying

A.11 SigCatVec6

Phase 1 Phase 2 Phase 3 Phase 4
number of iterations 5 5 5 5

ηf 0.02231786 0.02986512 2.271697E-06 2.929901E-06

ηg 5.368412E-05 0.008716031 2.843667E-11 4.453966E-05

ηh 4.310675E-06 6.237718E-06 0.05168699 1.182587E-05

ηs 0.0024299 0.009932901 4.058366E-07 6.896256E-07

Prediction method Qualifying (CV 4)

A.12 SigCatVec7

Phase 1 Phase 2 Phase 3 Phase 4
number of iterations 5 5 5 5

ηf 0.01983373 0.08431601 8.572736E-07 1.105661E-06

ηg 5.101598E-05 0.007684739 3.041355E-11 3.403341E-05

ηh 4.794967E-06 5.112884E-06 0.02255507 5.160553E-06

ηs 0.002150354 0.008940183 1.770982E-07 3.009375E-07

Prediction method Qualifying (CV 4)
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A.13 SigCatVec8

Phase 1 Phase 2 Phase 3 Phase 4
number of iterations 5 5 5 5

ηf 0.01983373 0.08431601 8.572736E-07 1.105661E-06

ηg 5.101598E-05 0.007684739 3.041355E-11 3.403341E-05

ηh 4.794967E-06 5.112884E-06 0.02255507 5.160553E-06

ηs 0.002150354 0.008940183 1.770982E-07 3.009375E-07

ccbias 0.007125622

ccslope 0.9566299

ccmin 0.02596347

ccmax 1.408656

cca 0.9043918

ccb 7.510946E-08

ccc 0.04633662

Prediction method Qualifying (CV 4)

A.14 PerClaim

Phase 1 Phase 2 Phase 3 Phase 4
number of iterations 5 5 5 5

mean 0.02948345

η1 8.277983E-05 0.0001205155 0.000140215 9.492154E-06

η2 9.338494E-06 7.199409E-05 8.916834E-06 5.106591E-08

η3 1.333333E-05 0 2.724926E-05 8.670087E-06

Prediction method Qualifying (Y1 only)

A.15 SigClaimVec1

Phase 1 Phase 2 Phase 3 Phase 4
number of iterations 5 5 5 5

η1 0.0001052431 0.0006378752 3.563327E-05 1.354099E-05

η2 0.02928185 0.02522659 0.02143314 0.01821492

η3 0.0312782 0.02925104 0.02465841 0.007686132

η4 0.002197431 0.003806778 0.02130464 3.2912E-05

wbias1 0.8210818

wbias2 0.9595

wbias3 0.935

wprovider 0.6516637

wvendor 1.652997

wpcp 0.1457351

wspecialty 1.2495

wplace 2.395576

wlos 0.5993496

wdsfs 1.202

wpcg 1.652592

wpg 2.275508

Prediction method Qualifying (CV 4)
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A.16 SigClaimVec2

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
number of iterations 5 5 5 5 5

η1 7.446387E-05 0.003400406 8.276997E-06 5.207112E-05 5.96212E-06

η2 0.03044203 0.0312788 0.02010364 0.02208705 1.835545E-06

η3 0.03158253 0.006951657 0.03037333 0.003526475 0.0008743242

η4 0.002342561 0.007359345 0.02837753 6.777202E-05 2.96498E-07

wbias 0

wsex 3.260356

wage 0.1731932

wbias1 0.8647634

wbias2 0.9697571

wbias3 0.9358035

wprovider 0.5224175

wvendor 1.467883

wpcp 0.1221808

wspecialty 1.020472

wplace 2.667761

wlos 0.5817887

wdsfs 0.9628636

wpcg 1.831175

wpg 2.459197

wisp 0.7229536

wia 0.4556737

wis 1.119802

wipl 1.74992

Prediction method Qualifying (CV 4)
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A.17 SigClaimVec3

Phase 1 Phase 2 Phase 3 Phase 4
number of iterations 5 5 5 5

η1 8.648005E-05 0.002775013 3.945398E-06 4.007937E-05

η2 0.03044203 0.03394 0.01884128 0.02271162

η3 0.03081222 0.009026892 0.02623151 0.003617873

η4 0.002342561 0.007313635 0.02750883 4.740497E-05

wbias 0

wsex 3.260356

wage 0.1731932

wbias1 0.8647634

wbias2 0.9697571

wbias3 0.9358035

wprovider 0.5224175

wvendor 1.467883

wpcp 0.1221808

wspecialty 1.020472

wplace 2.667761

wlos 0.5817887

wdsfs 0.9628636

wpcg 1.831175

wpg 2.459197

wisp 0.7229536

wia 0.4556737

wis 1.119802

wipl 1.74992

ccbias 3.633074E-07

ccslope 1.005121

ccmin 0.04843435

ccmax 1.008892

cca 0.997853

ccb 0.02073831

ccc 0.4973778

Prediction method Qualifying (CV 4)
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A.18 SigClaimVec4

Phase 1 Phase 2 Phase 3 Phase 4
number of iterations 5 5 5 5

η1 8.648005E-05 0.002775013 3.945398E-06 4.007937E-05

η2 0.03044203 0.03394 0.01884128 0.02271162

η3 0.03081222 0.009026892 0.02623151 0.003617873

η4 0.002342561 0.007313635 0.02750883 4.740497E-05

η5 0.001453925

wbias 1E-05

wsex 2.222178

wage 0.1390827

wsexage 0.09876291

wbias1 0.8647634

wbias2 0.9697571

wbias3 0.9358035

wprovider 0.4701757

wvendor 1.321095

wpcp 0.1099627

wspecialty 1.020472

wplace 2.667761

wlos 0.5817887

wdsfs 0.9628636

wpcg 1.648057

wpg 2.459197

wisp 0.7229536

wia 0.3079063

wis 1.161035

wipl 1.74992

wispl 7.390157E-06

wiapl 8.737499E-06

ccbias 1.617096E-06

ccslope 1.030841

ccmin 0.05591653

ccmax 1.038396

cca 1.023878

ccb 1.123463E-06

ccc 0.3876235

Prediction method Qualifying (70%)
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A.19 SigClaimVec5

Phase 1 Phase 2 Phase 3 Phase 4
number of iterations 5 5 5 5

η1 6.658964E-05 0.002934576 3.775358E-07 6.487648E-05

η2 0.03044203 0.03589155 0.02072541 0.02271162

η3 0.03081222 0.008124202 0.02360836 0.00397966

η4 0.002342561 0.007313635 0.02750883 5.830811E-05

η5 0.001788328

wbias 1E-05

wsex 2.222178

wage 0.1390827

wsexage 0.09876291

wbias1 0.8647634

wbias2 0.9697571

wbias3 0.9358035

wprovider 0.4701757

wvendor 1.321095

wpcp 0.1099627

wspecialty 1.020472

wplace 2.667761

wlos 0.5817887

wdsfs 0.9628636

wpcg 1.648057

wpg 2.459197

wisp 0.7229536

wia 0.3079063

wis 1.161035

wipl 1.74992

wisexpl 7.390157E-06

wiagepl 8.737499E-06

ccbias 1.617096E-06

ccslope 1.030841

ccmin 0.05591653

ccmax 1.038396

cca 1.023878

ccb 1.123463E-06

ccc 0.3876235

Prediction method Qualifying (CV 4)
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A.20 SigClaimVec6

Phase 1 Phase 2 Phase 3 Phase 4
number of iterations 5 5 5 5

η1 6.658964E-05 0.002934576 3.775358E-07 6.487648E-05

η2 0.03044203 0.03589155 0.02072541 0.02271162

η3 0.03081222 0.008124202 0.02360836 0.00397966

η4 0.002342561 0.007313635 0.02750883 5.830811E-05

η5 0.001788328

η6 0.0009236438

wbias 1E-05

wsex 2.222178

wage 0.1390827

wsexage 0.09876291

wtruncated 0.5125

wbias1 0.8647634

wbias2 0.9697571

wbias3 0.9358035

wprovider 0.4701757

wvendor 1.321095

wpcp 0.1099627

wspecialty 1.020472

wplace 2.667761

wlos 0.5817887

wdsfs 0.9628636

wpcg 1.648057

wpg 2.459197

wisp 0.7229536

wia 0.3079063

wis 1.161035

wipl 1.74992

wispl 7.390157E-06

wiapl 8.737499E-06

ccbias 1.617096E-06

ccslope 1.030841

ccmin 0.05591653

ccmax 1.038396

cca 1.023878

ccb 1.123463E-06

ccc 0.3876235

Prediction method Qualifying (CV 4)
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A.21 SigClaimVec7

Phase 1 Phase 2 Phase 3 Phase 4
number of iterations 5 5 5 5

η1 7.507981E-05 0.002970341 1.163757E-06 6.278235E-05

η2 0.03044203 0.03678884 0.02971972 0.0206776

η3 0.03237209 0.004879199 0.03153681 0.001866457

η4 0.002342561 0.007496476 0.02959606 3.110381E-05

η5 0.001421447

η6 0.0009120983

η7 0 1.038187E-05 1.445651E-05 1.247214E-06

wbias 1E-05

wsex 2.222178

wage 0.1390827

wsexage 0.09876291

wtruncated 0.7169875

wbias1 0.8647634

wbias2 0.8726583

wbias3 0.9358035

wprovider 0.2825756

wvendor 1.321095

wpcp 0.120959

wspecialty 1.255181

wplace 2.667761

wlos 0.5817887

wcharlson 0.08875125

wdsfs 1.184322

wpcg 1.648057

wpg 2.459197

wsuplos 0.08986406

wisp 0.7229536

wia 0.3079063

wis 1.161035

wipl 1.74992

wispl 6.651141E-06

wiapl 7.863749E-06

wlab 0.9524652

wdrug 1.763486

ccbias 1.499392E-06

ccslope 1.052047

ccmin 0.05411786

ccmax 1.040149

cca 1.028764

ccb 8.419494E-07

ccc 0.3670921

Prediction method Qualifying(CV 10)

21
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